
Enhancing Privileged Architecture Support
in RISC-V ISAC

Muhammad Hammad Bashir1,3, Umer Shahid∗1,3, Allen Baum2and Pawan Kumar Sanjaya4

110xEngineers
2Esperanto Technologies

3Department of Electrical Engineering, U.E.T Lahore
4Department of Computer Science, University of Toronto

Abstract

RISCOF, a Python-based framework, ensures the compliance of RISC-V processor implementations with
established instruction set simulators like Spike and Sail. This compliance testing framework offers both manual
and automated test suite generation through RISC-V CTG, while coverage analysis is performed using RISC-V
ISAC. However, automated test generation face challenges when handling privileged architecture tests due to the
complexities of exception handling, which often require manual composition. To overcome the limitation for the
coverage analysis, we introduce tailored features in RISC-V ISAC specifically designed for privileged architecture
support. Additionally, a more efficient approach to writing coverpoints is proposed, aiming to reduce redundancy
and simplify the process for users. These advancements aim to facilitate more comprehensive compliance testing.

Introduction

With the growing adoption of RISC-V processors
across various domains, ensuring the compliance of pro-
cessor implementations with the RISC-V ISA specifica-
tions becomes imperative. Compliance testing involves
verifying that a processor correctly executes instruc-
tions as specified by the RISC-V ISA and behaves
according to the architectural requirements. RISCOF
[1], a Python based compliance framework, developed
by InCoreSemi1 and currently maintained by RISC-V
International2, serves the purpose of evaluating RISC-
V target implementations against standard RISC-V
golden/pseudo-golden reference models such as SAIL
[2] and Spike [3] utilizing RISC-V ACTs (Architecture
Compatibility Tests) [4]. RISCOF has gained global
recognition owing to its open-source nature. The Fig-
ure 1, available at the RISCOF documentation cap-
tures the overall flow of RISCOF and its components.

While automated test generation via RISC-V CTG
(Compliance Test Generator) [5] streamlines the test-
ing process for most cases, it encounters challenges
when dealing with privileged architecture tests. The
complexities associated with exception handling in
privileged architecture tests make automated genera-
tion less suitable, necessitating manual composition
of these tests to ensure thorough coverage. RISC-V
ISAC (RISC-V ISA Coverage) [6] is a tool designed to
provide instruction level coverage checking using the
CGFs (Cover Group Format). The flow adopted by

∗Corresponding author: umer.shahid@10xengineers.ai
1 https://incoresemi.com/
2 https://riscv.org/

Figure 1: RISCOF Flow

the RISC-V ISAC3 is shown in Figure 2. The CGF is
structured as a dictionary where each node represents a
collection of coverpoints termed as covergroups. These
covergroups are defined based on specific ISA configu-
rations and instructions. For unprivileged architecture,
CGFs have been developed and are available at the
RISC-V CTG [5] and can be used to generate ACTs.
However, for the privileged architecture, there is no
such support in RISC-V CTG or RISC-V ISAC. In
this paper, we present features which enable enhanced
coverage analysis of privileged ACTs in RISC-V ISAC.
We also present a new format to write the coverpoints
in more intuitive way to avoid redundancy on the user
end.

Figure 2: RISCV-ISAC Tool flow

3 Figures have been used after permissions from the author

RISC-V Summit Europe, Munich, 24-28th June 2024 1

mailto:umer.shahid@10xengineers.ai
https://incoresemi.com/
https://riscv.org/

Table 1: Features updated in RISC-V ISAC

Feature Coverpoint Format Support

mode flag mode == ’M’ new

get_addr() get_addr(’label_name’) new

mem_val() mem_val(address
in hex/dec,
number_of_bytes_to_fetch)

new

mode_change mode_change == "S to
M"

new

rd_val rd_val == "value in
hex/dec"

new

mcause/mcause mcause ==
"exception_number"

updated

mtval/stval mtval == "tval" updated

Methodologies

Features in RISC-V ISAC

To address the issue of incomplete coverage for the
privilege architecture tests , we have introduced new
variables and features, which are detailed in Table 1.
Additionally, features to track address (virtual and
physical) for both instructions and data were added.
These features also track the implicit accesses during
page table walks, as depicted in Table 2.

Table 2: Features for Page Table Walk

Feature Coverpoint Format

pte property check get_pte_prop(prop_name,
pa, pte_addr,
pgtb_addr)

virtual and physical
address variables

iepa, ieva, depa,
deva

ptw variables iptw0a ... iptw4a,
iptw0cont ...
iptw4cont

Enhanced Coverpoint Format

We introduce a more concise format to define cov-
erpoints, utilizing a variety of rules and operations,
including ranges, macros, placeholders, loops, enumer-
ation with operations, and advanced range enumera-
tion to remove redundancy in user-defined coverpoints.
This new format, similar to abstract_comb [1], is ver-
satile and applicable to any label. The updated tool
flow for the RISC-V ISAC is given in Figure 3.

The first coverpoint under the mnemonics label ex-
pands to 8 distinct coverpoints in Listing 1. The macro
${custom_cov} can be used across multiple cover-

Figure 3: Updated RISCV-ISAC Tool flow

points to reduce redundancy, and its value is defined in
the macros.yaml file. The expression {{0...7} >> 2}
in Line 8 is evaluated, resulting in two sequences,
one {0, 1, 2, 3..., 7} for the $1 placeholder and other
{0, 0, 0, 0, 1, 1, 1, 1} for $2, generating 8 coverpoints in
total. The syntax {}[] in the second coverpoint refers
to a list.

Listing 1: Coverpoint format example for the Translator
1pmp_cover:
2config:
3- check ISA:=regex (.*I.*Zicsr .*)
4mnemonics:
5"{lw,sw ,${custom_cov},csrrw}": 0
6csr_comb:
7# Braces and placeholder features
8(pmpcfg {{0 ... 7}>>2} & 0x80 == 0x80) and (old(

"pmpaddr$1")) ^ (pmpaddr$2) == 0x00:0
9# List and more braces features
10# Example for understanding purposes
11(pmpcfg {0 ... 3} & 0x80 == 0x80) and pmpcfg {4

... 7}[$1] ^ (pmpaddr$2) == 0x00:0

Conclusions and Future Work

This paper presents two key advancements: features
support for privileged architecture in RISC-V ISAC
and a efficient method of writing coverpoints. Our
future plans involve expanding this support to hypervi-
sor extension and interrupt testing, thereby improving
the comprehensiveness of the coverage analysis tool.

References

[1] Pawan Kumar S et al. “Automating Generation and Main-
tenance of a High-Quality Architectural Test Suite for
RISC-V”. In: Proceedings of the Sixth Workshop on Com-
puter Architecture Research with RISC-V, Co-located with
ISCA (2022). url: https : / / carrv . github . io / 2022 /
papers/CARRV2022_paper_2_Kumar.pdf.

[2] RISC-V. Sail RISC-V model. https://github.com/riscv/
sail-riscv. 2024.

[3] RISC-V International. Spike, a RISC-V ISA Simulator.
https://github.com/riscv/riscv-isa-sim. 2024.

[4] RISC-V International. RISC-V Architectural Tests. https:
//github.com/riscv/riscv-arch-test. 2024.

[5] RISC-V Software Source. RISC-V CTG, Compliance Test
Generator. https://github.com/riscv-software-src/
riscv-ctg. 2024.

[6] RISC-V Software Source. RISC-V ISAC, a coverage anal-
yser. https://github.com/riscv-software-src/riscv-
isac. 2024.

2 RISC-V Summit Europe, Munich, 24-28th June 2024

https://carrv.github.io/2022/papers/CARRV2022_paper_2_Kumar.pdf
https://carrv.github.io/2022/papers/CARRV2022_paper_2_Kumar.pdf
https://github.com/riscv/sail-riscv
https://github.com/riscv/sail-riscv
https://github.com/riscv/riscv-isa-sim
https://github.com/riscv/riscv-arch-test
https://github.com/riscv/riscv-arch-test
https://github.com/riscv-software-src/riscv-ctg
https://github.com/riscv-software-src/riscv-ctg
https://github.com/riscv-software-src/riscv-isac
https://github.com/riscv-software-src/riscv-isac

	Introduction
	Methodologies
	Features in RISC-V ISAC
	Enhanced Coverpoint Format

	Conclusions and Future Work

