
Implementation and Performance Evaluation of Bit Manipulation
Extension on CVA6 RISC-V

Muhammad Ijaz
10xEngineers

Lahore, Pakistan
muhammad.ijaz@10xengineers.ai

Fatima Saleem
10xEngineers

Lahore, Pakistan
fatima.saleem@10xengineers.ai

Umer Shahid
University of Engineering and

Technology
Lahore, Pakistan

umershahid@uet.edu.pk

Saad Waheed
10xEngineers

Lahore, Pakistan
saad.waheed@10xengineers.ai

Jean-Roch Coulon
Thales Group

Meyreuil, France
jean-roch.coulon@thalesgroup.com

ABSTRACT
An embedded system requires two conflicting attributes, low power
and high performance. Embedded controllers and Internet of Things
(IoT) applications are seeing a paradigm shift from using x86 or
ARMv8 to the widely accepted RISC-V architecture. Bit manipula-
tion Instructions improve the speed of bit manipulation by provid-
ing better system performance due to its improved code density,
low power consumption, and improved runtime efficiency. RISC-V
base Instruction Set Architecture (ISA) doesn’t support bit manipu-
lation instructions. However, due to RISC-V architecture’s modular-
ized instruction extension support, processor designers can add bit
manipulation instructions to support low-power embedded appli-
cations. In this paper, we have implemented the bit manipulation
extension (B-extension) of RISC-V on OpenHW’s application class
SoC CVA6. We have synthesized the design for both the Kintex-7
FPGA board using Xilinx Vivado ISE 2018.2 and the TSMC 65 nm
cell library. We have performed quantitative analysis on size and
power improvement with the help of FPGA and ASIC synthesis
data. The performance and code size reduction capacity is presented
by showing the performance results of Dhrystone standard bench-
marks against the standard CVA6 ISA (IMAFDC or IMAFC) for both
RV64 and RV32 configurations. The result shows 4% improvement
in dynamic power usage for RV64, 12.5% improvement in code size
while building Linux image for RV64IMAFDCB at the cost of 4%
increase in LUTs for FPGA implementation and 3% increase in gate
count for ASIC implementation. We have seen 18% speed-up and
4% code size reduction for the Dhrystone benchmark.

CCS CONCEPTS
•Hardware→Application specific instruction set processors;
Power and thermal analysis; • Computer systems organization
→ Data flow architectures; • General and reference → Per-
formance; Design.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CF ’23, May 9–11, 2023, Bologna, Italy
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0140-5/23/05.
https://doi.org/10.1145/3587135.3591439

KEYWORDS
CVA6, RISC-V ’B’ extension, Dhrystone, Linux Image, ASIC Imple-
mentation, FPGA Implementation
ACM Reference Format:
Muhammad Ijaz, Fatima Saleem, Umer Shahid, SaadWaheed, and Jean-Roch
Coulon. 2023. Implementation and Performance Evaluation of Bit Manip-
ulation Extension on CVA6 RISC-V. In 20th ACM International Conference
on Computing Frontiers (CF ’23), May 9–11, 2023, Bologna, Italy. ACM, New
York, NY, USA, 2 pages. https://doi.org/10.1145/3587135.3591439

1 INTRODUCTION
RISC-V is an open-source ISA [3] whose base extension supports
word-sized, and half word sized operations. The RISC-V Bitmanip
extension (short for “Bit Manipulation”) [2] is a standard extension
of the RISC-V instruction set architecture that adds instructions
for bit-level operations such as bit counting, bit field extraction
and insertion, and bitwise logical and arithmetic operations. The
Bitmanip extension provides a set of instructions for manipulating
individual bits or groups of bits within a register. These opera-
tions are often used in cryptography, data compression, and other
performance-critical applications.

CVA6 [5], also known as Ariane Core, is OpenHW’s application
class processor. It is one of the most recognized open-source RISC-
V application class cores [1] and was developed on PULP open-
source platform. It is a six-stage pipeline core that implements
RV64IMAFDC architecture with three privilege levels. In this paper,
we have implemented bit manipulation instructions support for
CVA6 and evaluated its performance by running Linux image and
Dhrystone v2.0 benchmark codes [4]. The results are compared
against standard implementation for RV64 and RV32.

2 CVA6 BIT MANIPULATION SUPPORT
The microarchitectural changes to CVA6 for supporting hardware
Bitmanip instructions is illustrated in Fig 1. To add support for these
extensions, we have extended/modified the Decoder, ALU, and Mul-
tiplier modules of the CVA6 (highlighted in the figure). The major
changes have been done to the Decoder module which includes
adding the RISC-V Bitmanip opcodes and selecting the appropriate
CVA6 Functional Unit, Multiplier or the ALU, depending upon the
type of bit manipulation instruction. So, for instance, the sh1add
- shift by 1 add instruction’s functionality consists of a shift and

https://doi.org/10.1145/3587135.3591439
https://doi.org/10.1145/3587135.3591439


CF ’23, May 9–11, 2023, Bologna, Italy Trovato and Tobin, et al.

Table 1: ASIC and FPGA Synthesis and benchmark results for CV64A6_IMAFDC_SV39, CV64A6_IMAFDCB_SV39,
CV32A6_IMAFC_SV32, and CV32A6_IMAFCB_SV32

Category Parameters RV64IMAFDC RV64IMAFDCB RV32IMAFC RV32IMAFCB

Utilization LUTs

73726 (total)
81 (i_alu)
544 (multiplier)
5874 (scoreboard)

77113 (total)
547 (i_alu)
325 (multiplier)
5927 (scoreboard)

54629 (total)
9 (i_alu)
86 (multiplier)
4224 (scoreboard)

55591 (total)
184 (i_alu)
149 (multiplier)
4657 (scoreboard)

Power On-Chip Power 2.910 W (total)
2.726 W (dynamic)

2.981 W (total)
2.617 W (dynamic)

2.892 W (total)
2.686 W (dynamic)

2.870 W (total)
2.578 (dynamic)

Code size Reduction fw_payload.bin 2.4MB 2.1MB 2.1MB 1.9MB
Image 18.7 MB 17.6 MB 16.8MB 14.2MB
vmlinux 14.9MB 14.1MB 11.5MB 10.2MB

ASIC Synthesis
ASIC Synthesis RV64IMAFDC RV64IMAFDCB RV32IMAFC RV32IMAFCB

Total gate count 515 kgates 532 kgates 186 kgates 193 kgates
EX state (multiplier) 21.47 kgates 31 kgates 4.73 kgates 7.158 kgates
EX stage (ALU) 2.836 kgates 9.544 kgates <2 kgates 4.772 kgates

Dhrystone Benchmark Results for RV64 and RV32
Options RV64IMAFDC RV64IMAFDCB RV32IMAFC RV32IMAFCB
Time 5.0ms 250kcycles 4.1ms 205kcycles 6.3ms 315kcycles 5.9ms 295kcycles

Code Size 142.8KB 139.9KB 236.9KB 227.9KB

addition and as such is executed in the ALU. On the other hand the
clmul - carry-less multiplication instruction performs a carry-less
multiplication and so it is executed in the Multiplier unit. This also
illustrates that both the ALU and the multiplier units have to be
modified to support Bitmanip instructions.

Figure 1: CVA6 core microarchitecture featuring the RISC-V
bitmanip extensions

3 RESULTS ANALYSIS
In this section, the ASIC and FPGA implementation results are
compared between the standard CVA6 core and the modified core
with Bitmanip extensions. Dhrystone benchmark was compiled
with RISC-V GCC version 12.2.0 and run on a Linux-booted CVA6
core on a Kintex-7 FPGA board. The FPGA synthesis was done
using Xilinx Vivado 2018.1. The ASIC synthesis was done using
the TMSC 65 nm PDK and its gate count was compared against the
standard implementation. The complete results of the ASIC and
FPGA implementations, and Dhrystone benchmark are given in
Table 1.

4 CONCLUSION
In this paper we have shown the implementation of the Bitmanip
extension support in application class RISC-V processor (CVA6) and
evaluated the ASIC 294 and FPGA synthesis data, Linux code size
and Dhrystone benchmark results. The data show that a standard
CVA6 (RV64IMAFDC or RV32IMAFC) implemented on a FPGA
versus a CVA6 with the Bitmanip extensions (RV64IMAFDCB or
RV32IMAFCB) results in a 4% improvement in dynamic power for
RV64 (5% improvement for RV32) , 12.5% improvement in code-
size for RV64 Linux image (9% improvement for RV32) at a cost
of 4% increase in LUTs for an FPGA implementation (3% increase
in gate count for ASIC implementation.) We have also seen 18%
speed-up and 4% code size reduction in the results of the Dhrystone
benchmark.

REFERENCES
[1] Alexander Dörflinger,MarkAlbers, Benedikt Kleinbeck, YejunGuan, HaraldMicha-

lik, Raphael Klink, Christopher Blochwitz, Anouar Nechi, and Mladen Berekovic.
2021. A comparative survey of open-source application-class RISC-V processor im-
plementations. Proceedings of the 18th ACM International Conference on Computing
Frontiers (2021). https://doi.org/10.1145/3457388.3458657

[2] Bastian Koppelmann, Peer Adelt, Wolfgang Mueller, and Christoph Scheytt. 2019.
RISC-V Extensions for Bit Manipulation Instructions. In 2019 29th International
Symposium on Power and Timing Modeling, Optimization and Simulation (PATMOS).
41–48. https://doi.org/10.1109/PATMOS.2019.8862170

[3] Andrew Waterman, Yunsup Lee, David A Patterson, and Krste Asanovic. 2011.
The risc-v instruction set manual, volume i: Base user-level isa. EECS Department,
UC Berkeley, Tech. Rep. UCB/EECS-2011-62 116 (2011).

[4] Reinhold P. Weicker. 1984. Dhrystone. Commun. ACM 27, 10 (1984), 1013–1030.
https://doi.org/10.1145/358274.358283

[5] F. Zaruba and L. Benini. 2019. The Cost of Application-Class Processing: Energy
and Performance Analysis of a Linux-Ready 1.7-GHz 64-Bit RISC-V Core in 22-
nm FDSOI Technology. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 27, 11 (Nov 2019), 2629–2640. https://doi.org/10.1109/TVLSI.2019.2926114

Github Repository Link: https://github.com/openhwgroup/cva6;
Github Pull Request Link: https://github.com/openhwgroup/cva6/pull/878

https://doi.org/10.1145/3457388.3458657
https://doi.org/10.1109/PATMOS.2019.8862170
https://doi.org/10.1145/358274.358283
https://doi.org/10.1109/TVLSI.2019.2926114

	Abstract
	1 Introduction
	2 CVA6 Bit Manipulation Support
	3 Results Analysis
	4 Conclusion
	References

