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ABSTRACT

Virtual memory is essential for modern processor design, providing benefits like

memory protection, efficient multitasking, and abstraction of physical memory

management. It allows systems to handle larger applications and improve security by

isolating processes. Virtual memory is crucial for booting modern operating systems like

Linux. Linux relies on virtual memory to manage its multitasking environment, ensuring

each process has its own memory space and preventing one process from interfering with

another. Despite its importance, many Open source vector processors such as ARA from

the PULP platform lack virtual memory support, limiting their applicability in complex,

memory-intensive applications. This paper discusses the current limitations of ARA,

which operates in bare-metal mode, and the research efforts aimed at making it

compatible with Linux booting by adding virtual memory support.

By bridging this gap, the enhanced ARA vector processor will leverage the

sophisticated memory management capabilities of the Ariane core, resulting in a more

powerful and versatile processing unit. This integration is expected to expand the

applicability of vector processors in high-performance and secure computing

environments, opening new avenues for research and application.

An innovative and highly efficient design approach has been used to add virtual

memory support in ARA by sharing Ariane’s MMU. This results in running vector

applications based on vector instructions, such as LLAMA, on the core and achieving

high efficiency of the operations which takes more resources, power and time using only

scalar instructions based applications.

Furthermore, the design has been completely verified by running RISC-V test

suites and developing complex and efficient custom virtual memory tests and real time

applications.
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1. INTRODUCTION

The RISC-V Instruction Set Architecture (ISA) has revolutionized the field of

computer architecture by offering a flexible, open-source alternative to proprietary

ISAs[1]. Its open nature allows for widespread adoption and customization, facilitating

advancements in both academic research and commercial applications. The modularity

and extensibility of RISC-V have made it a preferred choice for developing highly

specialized processors, enabling innovations in fields ranging from embedded systems to

high-performance computing[2]. The RISC-V ecosystem has grown to include

comprehensive software toolchains, simulation environments, and extensive

documentation, further promoting its use and exploration.It is expected that by 2025, 62.5

billion RISC-V processors will be used in various applications.

1.1. VECTOR PROCESSORS

The open RISC-V ISA specification is also leading an effort towards vector

processing through its vector extension[1][4]. The vector extension is designed to handle

large amounts of data in parallel, using a single instruction to perform operations on

multiple data elements. Scalar processors can act on one piece of data at a time while

vector processors can act on several pieces of data (multiple elements) at a time with a

single instruction[3]. These multiple pieces of data are basically one-dimensional arrays

of data called vectors and hence the need for a Vector ISA.

Vector ISA includes 32 vector registers and the number of bits in a single vector

register (VLEN) is implementation dependent and a power of 2 (32, 64, 128, 256...)[3]. A

vector instruction operates on all elements of a single vector register. The element size is

selected through SEW(Selected Element Width) which can be 8(byte), 16(half word),

32(word) and 64(double word). So, the number of elements in a vector register is

determined by VLEN/SEW. For example, if VLEN is 512 and SEW is 8 then in one

vector register there will be 64 elements[3].

Furthermore, Multiple Vector Registers can be grouped (concatenated) together

as shown in figure 1.1, so that a single vector instruction can operate on multiple vector
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registers which can be set through the LMUL which strips the elements across the vector

registers[3]. LMUL has to be a power of 2 The maximum value of LMUL is 8 and can

have fraction values with the minimum value of ⅛.

Figure 1.1 Vector register grouping according to LMUL[3]

The load/store operations of a vector processor moves a group of data between a

vector register file and memory using a single instruction. The misaligned support is

optional and implementation dependent. The RV specifications have four basic types of

addressing for the load/store operations: Unit strided, Strided, indexed and segmented.

1.1.1. Unit strided operations

This operation accesses contiguous memory addresses as shown in figure 1.2.
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Figure 1.2 Unit Strided Operation[3]

1.1.2. Strided operations

This operation gathers/scatters data on a fixed stride. The stride can be negative and in

case of zero stride, the same location of memory is read or written as shown in figure 1.3.

Figure 1.3 Strided Operations[3]

1.1.3. Indexed operations

In case of indexed operations, the data is scattered/gathered on a variable stride. The

stride value for each element is provided in a vector register. On send a request for data

operation, indexed load/store reads VRF for stride value and add it to the base value to

generate a memory address as shown in figure 1.4.
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Figure 1.4 Indexed Operations[3]

Segmented operations are one of the most complex operations of RV ISA. It is

further divided into unit stride segmented, stride segmented and indexed segmented

operation. The research of vector core selected for this thesis doesn’t support segmented

operations so we have excluded the details of these operations.

Recognizing the efficiency of vector processors and the simplicity, compatibility,

and ease of the RISC-V Vector ISA, numerous research groups and companies have

begun developing RISC-V compliant vector cores. Many of these organizations have also

open-sourced their RISC-V processor implementations, contributing to the growing

ecosystem. One of the most cited among them is the ARA Vector Unit working as a

co-processor for the Ariane core from OpenHW Foundation[5][6].

1.2. ARIANE

CVA6, also known as Ariane, is a 64-bit application-class RISC-V core developed

by the OpenHW Group[7]. Ariane is a wrapper of CVA6 which instantiates CVA6 and

leaves space to integrate extensions and co-processors. The CVA6 features a six-stage

pipeline and is compatible to boot Linux[8]. It is designed for high-performance

computing tasks. It has support for multiply/divide and atomic operations as well as

IEEE-compliant FPU[11]. It is manufactured in GLOBALFOUNDR IES 22FDX FD-SOI

by Zaruba and Benini[8]. The Six stages pipelined architecture consists of Program

Counter Generation, Instruction Fetch, Instruction Decode, Issue stage, Execution stage

and commit stage as shown in figure 1.5. The first two stages are Ariane's frontend



5

responsible for fetching new instructions and housing the branch prediction unit while the

rest of the stages are its backend and have scalability of integrating co-processors[7].

Figure 1.5 CVA Core[7]

The load store unit(LSU) of CVA6 is responsible for reading and writing the

memory. The internal structure of LSU is shown in figure 1.6. It is located in the

execution stage and can configure MMU based on sv32 and sv39 architecture.

Additionally, it has to manage the interface to the data memory (D$). In particular, it

houses the DTLB (Data Translation Lookaside Buffer), the hardware page table walker

(PTW), and the memory management unit (MMU). It also arbitrates the access to data

memory between loads, stores, and the PTW - giving precedence to PTW lookups[7].

This is done in order to resolve TLB misses as soon as possible. A high-level block

diagram of the LSU is shown below
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Figure 1.6 CVA6 Load Store Unit

The LSU has a separate load unit and store unit to manage the data bus. Once an

instruction is entered to LSU, it is sent to the load unit or store unit based on their

opcodes. The corresponding unit sends a translation request to MMU along the virtual

address. If translation is enabled and pmp is properly configured, MMU sends the

physical address back. The load unit or store unit sends the request to memory for

relevant operation.
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1.3. ARA

ARA is a high-performance 64-bit vector unit designed by PULP Platform for

data-parallel applications, compliant with the RISC-V Vector 1.0 Extension[5][3]. It

supports mixed-precision arithmetic and integrates within the PULP platform to work as

an extension of the Ariane core. This processor aims to deliver extreme energy efficiency

and scalability for computational tasks that benefit from vectorized operations .

ARA consists of first pass decoder, Dispatcher, Sequencer VLSU, Slide unit and

Lanes. ARA can have up to 4 lanes configuration with 1024 VLEN. ARA is integrated at

the backend of Ariane using a first pass decoder as shown in figure 1.7. The vector

instructions are partially decoded and passed to ARA first pass decoder which dispatches

it to ARA.

The dispatcher of ARA is responsible for the interface between Ara and Ariane's

dedicated scoreboard port. The sequencer keeps track of the instructions running in Ara,

dispatching them to different execution units and acknowledging them to Ariane. The

slide unit is responsible for handling instructions that need access to the vector register

file. The VLSU performs memory operations. It uses AXI protocol and generates AXI

requests upon receiving requests of memory load and store operation from sequencer.
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Figure 1.7 ARA Internal Structure[5]

Ara can be configured with N number of identical lanes. Each lane has its own

lane sequencer which can keep track of up to eight vector instructions running in parallel.

Each lane is almost independent and contains ALU, MUL, FPU and part of vector

register file[5].

The VLSU of ARA also has a separate load and store unit. On receiving a request

from sequence, the address generator unit generates the address and sends the address on

AXI read address channel for load operations and AXI write address channel in case of

store operation. It signals the load and store units about the request so that they can

receive data or write data on data bus respectively as shown in the figure 1.8.
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Figure 1.8 ARA’s Vector Load Store Unit(VLSU)

Currently, ARA operates in a bare-metal mode without virtual memory support,

limiting its ability to run complex operating systems like Linux[5][9]. My research

focuses on making ARA compatible with Linux booting by integrating virtual memory

support[10]. This endeavor aims to bridge the gap, although resource constraints have so

far prevented a successful Linux boot on the vector processor. Overcoming these

challenges will significantly enhance the capabilities of ARA and open new avenues for

its application in high-performance and secure computing environments[12] .

The main focus of this research revolves around the address generator unit in

VLSU of ARA as it is generating addresses to send the requests to AXI Bus for load/store
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operation[5]. Currently, Ara supports unit strided, strided and indexed operations. For

unit strided operations, burst is generated aligned with 4k pages. When the burst crosses

the page boundary, new requests with the remaining elements are generated. For strided

and indexed operations, a request is generated for each calculated address.



11

2. METHODOLOGY

To implement virtual memory support in ARA and make it compatible with

booting Linux, a systematic approach is essential. The process begins with a thorough

analysis of ARA's and Ariane’s microarchitecture and configurations to determine the

most suitable method for our implementation. Understanding the existing structure and

performance characteristics is crucial to ensure that the new virtual memory support will

integrate seamlessly and operate efficiently. Below are the steps for the implementation

process:

2.1. STABILIZING THE ARA

Ara is currently in its development phase, which means it still has many bugs and

errors that are reported from time to time. Among the reported issues, two critical bugs

related to exception handling were identified as particularly relevant to ongoing research

and implementation efforts.

Exception handling is crucial, especially when booting Linux on a core, as it

ensures the system can gracefully handle unexpected situations and maintain stability.

Recognizing the importance of this, a thorough investigation was conducted to address

the identified bugs. The bugs were successfully fixed, establishing a stable path for

exception handling within Ara, and ensuring smoother and more reliable operations

during core booting processes.

After implementing the fixes, a Merge Request (MR) was created to integrate

these changes into the main codebase. The MR was reviewed, and the changes have since

been mainstreamed into Ara's GitHub repository. This contribution not only aids ongoing

research but also enhances the overall stability of Ara, benefiting other developers and

researchers working on the project.

2.2. SELECTED CONFIGURATIONS OF ARA AND ARIANE

Considering the available resources and existing limitations, the configuration

chosen for ARA is lane 2 with a VLEN of 512. On the Ariane side, the Floating Point



12

Unit (FPU) and Bit Manipulation extension have been disabled to streamline the

compilation process and manage resource constraints effectively.

2.3. CHOOSING THE SUITABLE ENVIRONMENT

Ara has its own System On Chip(SOC) environment and its own testbench[5]. In

ara soc, it instantiates ara_syatem which have Ara and Ariane integrated in parallels

shown in figure 2.1. This setup can be used to implement the proposed design but the

issue is that ara_soc doesn’t include ariane’s capability of booting linux.

Figure 2.1 ARA System On Chip Design

On the other hand, Ariane’s environment is much more stable and already capable

of booting linux[2]. It provides a robust environment ideal for designing and testing due

to its comprehensive integration of various master and slave modules connected via an

AXI crossbar. This setup includes components such as DRAM, GPIO, Ethernet, SPI,

Timer, UART, PLIC, CLINT, BootROM, and SRAM, facilitating extensive testing and

debugging as shown in figure 2.2 . With clear signal assignments and modular structure,

this environment supports seamless communication and interaction among components,
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making it highly suitable for advancing research and implementation in system-on-chip

designs.

Figure 2.2 Ariane’s System On Chip Design[7]

2.3.1. Integration of Ara and Ariane in Ariane’s SOC

To integrate Ara and CVA6 in ariane wrapper, an invalidation filter and AXI

Multiplexer is added. This wrapper is designed specifically for this research work. The

axi request from ara passes through the inval_filter to generate an invalidation request for

CVA6 caches. The AXI Mux multiplexed the axi requests between CVA6 and Ara as



14

shown in the figure 2.3. Cva6 and Ara communicated with the cvxif port of cva6,

specifically designed to integrate the vector processor.

Figure 2.3 Integrating Ara in Ariane’s test bench

2.4. DESIGN APPROACH

The design approach includes sharing the Ariane’s Memory Management Unit

(MMU) with ARA. ARA is integrated with Ariane using Ariane's cvxif port. To create a

communication path from ARA's Vector Load/Store Unit (VLSU) to the MMU,

additional signals are incorporated into the same port. The main design modifications

focus on the Address Generator unit of ARA’s VLSU. This module, responsible for

sending AXI requests to the memory, is altered to incorporate Ariane's MMU path for

address translation. By leveraging the shared MMU, the Address Generator unit can route

AXI requests through this newly established path, ensuring efficient address translation

and memory access. This approach optimizes resource utilization by reducing
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redundancy, simplifies address translation, and enhances system integration, leading to

improved performance and efficiency. A clear path from Ara’s address generator unit to

cva6’s MMU can be shown in figure 2.4.

Figure 2.4 Added path from ARA’s VLSU to Ariane’s MMU

The virtual address is sent to the cva6’s MMU and a physical address is received. The

load store unit of both the cores are responsible for handling AXI data transactions.

2.4.1. CVA6 Modifications

An arbiter is integrated into the Load/Store Unit (LSU) of the CVA6 to manage

the requests from both the scalar core and the vector core. When a request is directed to
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the LSU by the issue stage, the LSU generates a virtual address using the operands

received from the decode stage and the register file. This virtual address is then sent to

the Memory Management Unit (MMU) for translation. If virtual memory is enabled, the

MMU translates the virtual address into a physical address.

In order to share the MMU with Ara, a round-robin arbiter is implemented within

this process, with an additional port introduced in the LSU specifically for handling

ARA's translation requests as shown in figure 2.5. Requests from the vector and scalar

units are fed into the arbiter through a 2-bit input, with scalar requests assigned to index

zero and vector requests to index one. The arbiter grants one request at a time, registering

the index of the granted request and forwarding it to the MMU.

Figure 2.5 Design modification in CVA6’s LSU
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Once the MMU completes the address translation, the stored index is used to

route the response back to the appropriate unit. This is crucial because the MMU may

take multiple cycles to translate the address, especially in the case of a Translation

Lookaside Buffer (TLB) miss. By using this mechanism, the arbiter ensures that the

translated address is correctly returned to either the scalar or vector unit, maintaining

efficient and orderly processing of memory requests.

2.4.2. ARA’s Address generator Unit Design

In the VLSU's Address Generator Unit (AGU), a crucial redesign is necessary to

implement address translation. The AGU is responsible for generating addresses for load

and store operations, sending them over the AXI AR channel for loads and AW channel

for stores[5]. To achieve this, the AGU must be modified to interface with the CVA6's

Memory Management Unit (MMU).

As illustrated in the figure, the original AGU consists of two primary FSMs as

shown in figure 2.6 :

1. Address Generator FSM: This FSM receives requests from the sequencer and

processes them accordingly. For unit-strided and strided operations, it forwards the

requests to the AXI Request Generation FSM, accompanied by the stride value. In the

case of indexed operations, the Address Generator FSM reads the Vector Register File

(VRF), calculates the address by adding the base address and index, and stores it in the

spill registers.

2. AXI Request Generation FSM: This FSM is responsible for managing the AXI

channel interfaces. For unit-strided operations, it sends burst requests over the AXI

channel. For strided operations, it sends consecutive requests, incrementing the address

by the stride value each cycle. In the case of indexed operations, it reads the spill registers

and sends the corresponding requests over the AXI channel.

A critical design decision was made to integrate the Memory Management Unit

(MMU) interface into either the Address Generator FSM or the AXI Request Generation
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FSM. After careful consideration, it was determined that the latter would be the optimal

choice, as it is responsible for forwarding addresses to the AXI channels. Consequently,

the AXI Request Generation FSM was redesigned to accommodate an additional port

with the MMU, ensuring efficient address translation and memory request management.

Figure 2.6 ARA’s Address Generator Unit(AGU)
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The modified AXI Request Generation FSM is shown in the figure 2.7. The states of the

FSM are

● AXI_ADDRGEN_IDLE

● AXI_ADDRGEN_WAIT_MMU

● AXI_ADDRGEN_SEND_REQ

● AXI_ADDRGEN_MISSALIGNED

● AXI_ADDRGEN_WAITING

The primary concept involves sending the base address for translation in both

unit-strided and strided operations. The AXI request aligns with 4KiB pages. The

boundaries of the current page and the next page are calculated and stored. So, If a

transaction crosses a page boundary, a new request is sent to the MMU with the next

4KiB page base address for translation. Counters are used to add the offset based on

stride in each cycle, monitoring the transaction length. When the transaction length

reaches zero, the operation ends.

For indexed operations, a translation request must be sent to the MMU for each

transaction because the index value cannot be determined without reading it from the

VRF. To minimize the latency of waiting for the MMU, the next address is read from

spill registers and sent to the MMU simultaneously, while the physical address is sent on

the AXI channel in parallel. This process eliminates a cycle wait for each transaction

under ideal conditions (TLB hit).



20

Figure 2.7 AGU’s FSM

Unit strided and strided operation: The FSM starts in the IDLE state, awaiting a

request from the Address Generation FSM. Upon receiving a valid request, it forwards a

request to the MMU along with the virtual base address, transitioning to the

WAIT_MMU state. It remains in this state until the MMU provides a physical address.

Once a physical address is obtained, if it meets alignment requirements, the FSM

progresses to the SEND_REQ state. Here, it continuously generates addresses by

incrementing the physical address with stride value or unit stride until it reaches a page
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boundary. Upon crossing the page boundary, it requests the next page base address from

the MMU and re-enters the WAIT_MMU state to await a response.

Indexed Operations: For indexed operations, the FSM doesn't initiate a translation

request while in the IDLE state since the address isn't yet available in the spill registers.

Instead, it transitions directly to the WAIT_MMU state, where it requests translation from

the MMU before moving to the SEND_REQ state. In this state, it retrieves the virtual

address of the next transaction from the spill registers to request translation from the

MMU, while simultaneously forwarding the current physical address to the AXI channel.

The implementation of this innovative technique has yielded significant efficiency

gains. Under ideal conditions, it takes only two additional cycles for unit-strided and

strided operations, and just one extra cycle for indexed operations. Importantly, this

address translation enhancement has been achieved without introducing additional

latency.
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3. VERIFICATION EFFORTS

An additional challenge in this research was the verification of the implemented

design, which posed a significant obstacle. Notably, no prior efforts had been made to

develop tests for vector cores with virtual memory enabled, and no relevant vector tests

were available in open-source repositories for use with the Ariane testbench and

environment. To overcome this hurdle, custom tests were specifically designed and

developed for this research, and run on the proposed design to validate its functionality.

Furthermore, a customized application was created using only scalar instructions

and then vector instructions to compare the efficiency of a vector core capable of virtual

memory and booting Linux. This endeavor significantly added to the effort and

complexity of this thesis.

3.1. CUSTOMIZED TESTS

To ensure the design's accuracy, self-checking vector tests were developed in both

bare metal and user modes, with virtual memory enabled. These tests were written within

the Ariane environment and successfully executed using Ariane's testbench. The

comprehensive test suite covers a wide range of scenarios, including unit strided, strided,

and indexed operations for various element widths (SEW) of 8, 16, 32, and 64 bits,

thereby exhaustively testing all possible cases.

3.2. CUSTOMIZED APPLICATION

A highly customized self-checking algorithm was developed to efficiently manage

a series of load and store operations on extensive data chunks. This algorithm was

initially implemented using only scalar instructions. The scalar version of the application

was executed on the core operating in user mode, with virtual memory enabled. This

environment simulates a realistic operational context, ensuring the algorithm's

performance is evaluated under conditions similar to actual use cases.

In this implementation, the application sequentially processed the data using

scalar instructions, which handle one data element per instruction cycle. Despite the
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straightforward nature of scalar processing, it tends to be less efficient for operations

involving large datasets due to its inability to exploit data-level parallelism.

To address this inefficiency, the application was reimplemented using vector

instructions. Vector instructions can process multiple data elements simultaneously,

thereby significantly improving the throughput of data-intensive operations. This

vectorized version was also run on the core in user mode with virtual memory enabled,

maintaining the same operational context to ensure a fair comparison. The operations of

application is shown in figure

Figure 3.1 Customized App data flow

The results demonstrated significant efficiency gains: the scalar instruction-based

application’s cycle consumption progressed exponentially while the vector based

application’s cycle count almost remained the same to complete the same amount of

operations compared to the vector instruction-based application.



24

Figure 3.2 clock cycles vs. data

The instructions per cycle comparison is:
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Figure 3.3 No. of instruction vs. data

In summary, running a vector application on a core significantly enhances

its speed and efficiency. For a core to run vector applications, it must have vector

extensions enabled, and the vector coprocessor must support booting Linux to facilitate

communication with the hardware. Additionally, the vector processor needs to support

virtual memory.

In this research, we successfully enabled virtual memory for the vector

coprocessor ARA, making it capable of booting Linux and running vector applications.

This marks a significant milestone, as ARA is now fully equipped to handle advanced

computing tasks with improved performance.
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However, due to resource constraints, we were unable to boot Linux fully because

of the limited availability of larger FPGAs required to map both Ariane (CVA6) and

ARA. The combined size of CVA6 and ARA exceeds the capacity of the available

FPGAs in Pakistan. We attempted to use the following boards from UET:

● Xilinx Kintex-7 FPGA KC705

● Xilinx Zynq-7000 ZC702

● Nexys A7

Despite these constraints, we were able to successfully boot Linux by stubbing

ARA, including its wrapper, on these boards. This success confirms that our design is

functioning correctly and lays the groundwork for future implementations on more

capable hardware.
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